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I. Fhys. A Math. Gen. 26 (1993) 2285-2299. Rinted in the UK 

Equilibrium crystal shape of hard squares with diagonal 
attractions 

Masafumi Fujimotot 
Department of Physics, Faculty of Science, Osaka University. Machikaneyama 1-1, Toyonaka 
560. Japan 

Received 4 December 1992 

Abstract We exactly calculate the anisotropic interfacial tension of a square lattice gas model 
with nearest-neighbour exclusion and next-nearest-neighbour attractions. This is achieved by a 
method which introduces the shin operator inw the standard transfer matrix argument. Fmm 
the calculated anisotropic b~terf;icial tension the equilibrium nystal shape (Em) is derived by 
the use of the Wulff wnsrmction. The ECS is a closed curve in lhe X-Y plane, represented 
as wsh[A(X + Y ) / b T ]  + A )  cnshIA(X - Y) /ksT]  + A d 2  = 0 with a scale factor A and 
constants AT. Ad. We argue ulat this shape is a universal one which appears as the Ecss of a 
wide class of models. 

1. Introduction 

In connection with the roughening transition phenomena the equilibrium crystal shape (ECS) 
has attracted much attention 111. A traditional method for finding the ECS is the Wulff 
construction 121, where the interfacial tension with its full anisotropy (anisotropic interfkial 
tension) is needed. A statistical mechanical model is solvable if it yields a parametrized 
family of solutions to the Yang-Baxter equation [3,4]. We have many such solutions to 
the Yang-Baxter equation and hence many solvable models [4]. Within the framework of 
the standard transfer matrix argument 131, we can obtain the interfacial tension of solvable 
models along a special direction. Analysis of the anisotropy, however, is a very complicated 
problem there. Recently, we developed a new method for finding the anisotropic interfacial 
tension 1561. The new method introduces the shift operator into the standard transfer matrix 
argument. 

In a previous paper [7] we calculated the anisotropic interfacial tension of the eight- 
vertex model using the shift operator method. From the anisotropic interfacial tension we 
derived the ECS via the Wulff construction. The ECS of this model is represented as 

a',¶' + 1 + A~*"'(0r2 + ,¶') + Af")a,¶ = 0 (1.la) 

with 

. ff = ( -AX/kBT) ,¶ = ( -AY/kBT) (Llb) 

where (X, Y) is the position vector of a point on the ECS and A is a scale factor. The eight- 
vertex model contains the square lattice king model and the six-vertex model as special 
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limits with respect to a parameter 4 [3]. Showing that the coefficients A Y )  and A Y )  are 
independent of 4. we extend the fact that the ECSS of the square lattice king model and the 
six-vertex model are essentially the same 181. Equation (1.la) is a symmehic biquadratic 
relation between a and @. The symmetric biquadratic relation is naturally paramehized 
in terms of the Jacobian elliptic functions. We pointed out that an elliptic function p(u)  
in the expression of the interfacial tension is directly related to the sn function in this 
parametrization. (For definition of p(u) ,  see (3.11) of [7].) In other words, the symmetric 
biquadratic relation (1 .1~)  is a source of the elliptic function p(u).  

In solving the hard-hexagon model, Baxter [3,9-111 considered a square lattice gas 
model with nearest-neighbour exclusion (thus 'hard-squares') and next-nearest-neighbour 
interactions: an occupation number q(= 0, 1 )  is assigned to each site i of a square lattice; 
q = 0 if the site i is empty; uj = 1 if the site i is occupied by a particle. When occupation 
numbers around a face are a, 6,  c and d counterclockwise starting from the bottom-left 
comer, the Boltzmann weight of the face is 

mz~u+b+C+d)/4eKac+Lbdt-a+b-c+d if ab = bc = cd = da = 0 (1.2~2) 
1 0  otherwise 

W(a,  b, c,  d )  = 

There are five independent Boltzmann weights around a face: 

01 = W(0,  0.0, 0) = m 

02 = W(I, 0, o,O) = w(o, 0, 1,o) = mz1J4/t 

03 = W(o,l,O, 0) = w(o, o,o, 1) = mz1I4t 

04 = W(1.0, 1,o) = mz'/'eK/t2 

05 = W(O, I,O, 1) = mzl/'eLtZ 

(1.2b) 

In (1.2) m is a trivial normalization factor and I is a parameter which cancels out of the 
partition function. For given values of one-particle activity z and diagonal interactions K, 
L, we can determine the thermal equilibrium state of the hard-square model. In the three- 
dimensional (2 ,  K, L) space this model is solvable on a two-dimensional manifold defined 
by 

z = (1 - e-K)(l - e-L)/(eK+L - eK - eL) (1.3) 

Baxter divided the manifold (1.3) into six regimes I-VI. 
The connection between p(u)  and ( 1 . 1 ~ )  in the eight-vertex model makes the ECSs of 

regimes JII and IV very interesting. The manifold (1.3) corresponds to regimes III and IV in 
the case of attractive diagonal interactions: K, L > 0. Regime III is a first-order transition 
surface separating a disordered fluid phase and c(2 x 2) ordered solid phases, where one of 
the two sublattices is preferentially occupied by particles [ll, 121. Regime IV is an analytic 
continuation of regime III beyond a line of tricritical points but lies entirely in the c(2 x 2) 
ordered solid phase. For regimes III and lV Baxter and Pearce (BP) [I11 calculated the 
interfacial tension along a special direction by standard transfer matrix argument In both 
regimes the interfacial tension is expressed in terms of essentially the same elliptic function 
as p(u).  In the present paper we investigate the ECSs of regimes III and IV. The anisotropic 
interfacial tension of regimes III and IV is found by the shift operator method. Then, the 
ECSS are derived via the Wulff construction. The shift operator method is also used to 
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show a simple thermodynamic relation between the anisotropic interfacial tension and the 
anisompic correlation length. 

The layout of this paper is as follows. In section 2 we are concemed with regime IV, 
and in section 3 regime III. Finally, section 4 is devoted to a summary and discussion, 
where we argue that (1.1) is a universal shape which appears as the ECss of a wide class of 
models. 

2. Regime IV 

2.1. Anisotropic interfncinl tension 

In this section we consider a system where two c(2 x 2)  ordered solid phases coexist with 
a phase separation line (or an interface). We denote the interfacial tension between the 
two solid phases by y(S  - S). We start with reviewing the analysis of y(S  - S) by EP 
[ I l l ,  where its anisotropy does not enter. Suppose a square lattice of M columns and N 
rows with periodic boundary conditions in both directions. When M 1 (mod 2) and 
N 0 (mod 2), reflecting the existence of a mismatched vertical interface (figure I@)), 
extra factors appear in the largest eigenvalues of the transfer matrix. BP obtained y(S  - 5') 
along the vertical direction from the extra factors. 

Figure 1. Mismatched vertical seam (or interface) in Ihe x -+ 0 limit. (U) When M = 1 
(mod 2) and N f 0 (mod 2). lhere exists a mismatched vertical interface in the system. (b) The 
shift operator is inserted into a system with a mismatched vertical interface. The shift operator 
tilts the interface by moving the endpoint on the first row from that on the (N + 1)th row along 
Ihe horizontal direction. 

To find the anisotropy of y(S  - S), we repeat the argument in sections 3.1 and 3.2 of 
[5]. We tilt the vertical interface by inserting the shift operator into the lattice (figure l(6)). 
The shift operator has the effect of  moving the pafticle configuration on a row to the right 
along the horizontal direction by a lattice spacing, It is convenient to define the transfer 
matrices T(w) [IO] as 
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where U = (u1, g, . . . , UM]  and U' = [U;, U& .. . , uh] are the particle configurations of 
two successive periodic rows of M sites: the five Boltzmann weights os in (1.26) are 
parametrized by (3.1 1) of [lo] with 1 < w < xWz and -1 c x < 0. In the w + 1 limit 
T(w) d u c e s  to the shift operator. By the use of T(w), the anisotropic interfacial tension 
is represented as 

- y(S - S ) / ~ B T  = lim 1 In 1 T ~ [ T ( W ) T ( ~ ) ~ I ~  
M.N+m N J r + T ; Z  MKMN(W) 

where the limit is taken under the conditions that M 0 
(mod 2), with q fixed to be constang Tp(w) ( p  = 1,2, .  . .) is the pth eigenvalue of T(w) 
in decreasing order of magnitude: K(W) is the partition function per face, given by 

1 (mod 2) and N ( l  + q) 

K(w)=  lim T,'/~(w). (2.B) 
M+m 

The explicit forms of Tp(w) were determined in section 3.1 of BP. Substituting them 
into (2.2). we get 

where 

@(w)  = w+* f (xw, x 4 ) / f  (xw-1, x4) (2.44 

(2.4b) 

In the M -+ 00 limit T p ( ~ ) / ~ M ( ~ )  and T,(1) in (2.20) become @(w/b) and @(l/b), 
respectively. We denote the continuous distribution of the eigenvalues on two sheets of 
Riemann surface by p(b). The explicit form of p(b)  is unknown. Her& it is sufficient to 
assume its analyticity. 

The integral in the right-hand side of (2.3) is estimated by the method of steepest 
descent. It follows that 

m 

f (P?P) = (1 - P )  - P4")(1 - P-'4")(1 - 49.  
*=I 

y (S - SI@l)/kBT = COS 61 In @(bJW) + Sin 6~ In @(bS) - H I 2  < 6, < I C / ~  (2.5) 

where 0, is the angle between the horizontal direction and the normal direction of the l i e  
connecting the two endpoints of the interface (figure l(b)): q is related to 6, as 

q = tan61 (2.6) 
and b, is a saddle point of [@(w/b)@(l/b)[, given by 

with the condition 

ba = -XW 6~ = 0. (2.7b) 

From the relation y(S - Sle1 + H )  = y(S - SpL), it is found that the expression (2.5) is 
analytically continued into -H < 6'1 < P, with bs regarded as a function of 01. 



ECS of hard squnres 2289 

2.2. Equilibrium crystal shape 

We now draw the ECS in the X-Y plane. Suppose that a droplet of one solid phase whose 
area is fixed to be constant is embedded insidr. a sea of the other solid phase. The ECS is 
the droplet shape of the minimum energy obtained from the anisotropic interfacial tension 
y(S - S) via the Wulff construction [1,2]: 

A X  =coseLy(s - s~eL)  -sineLdy(S-sieL)/deL 

AY = s i n & y ( ~ -  s i e ~ ) + c o s e ~ d y ( S - s i e ~ ) / ~ L  
(2.8) 

where A is a scale factor adjusted to yield the area of the ECS; the position vector of a point 
on the ECS, denoted by (X, Y ) ,  is represented as a function of 0,: (X, Y )  sweeps out the 
ECS as 6, varies from --x to n. Substituting (2.5) into (2.8), we get 

AX/kBT = ln+(b,/w) AY/kBT = ln+(bs). (2.9) 

Note that +(w) is essentially the same elliptic function as p ( v )  given by (3.11) of [7]. 
We can write (2.9) into the symmetric biquadratic relation (l.la), where the two coefficients 
A?) and AF' are replaced by 

AV = -wf2(x2w,x4)/~f2(w,x4) 
(2.10) 

= w'/' f 3 ( ~ 2 , ~ 4 ) f ( ~ 2 , ~ 4 ) / ~ f 3 ( ~ , ~ 4 ) f ( ~ ~ Z ,  x4)  

and +(w) corresponds to the sn function which naturally parametrizes the symmetric 
biquadratic relation &la). Comparing (2.10) with (4.22) of 171, we find that the ECS 
(2.9) is identical to that of the eight-vertex model with 

a('"' = -l/xw x(8vl = -x (2.11) 

where a(8v) and d8"' are the variables of the eight-vertex model defined by (4.18b) and 
(3.5) of 171, respectively. 

2.3. Anisotropic correlation length 

We suppose a sufficiently large lattice of M columns and N rows with periodic boundary 
conditions in both directions [M = N 0 (mod 2)J. The pair correlation function between 
the site (0,O) and the site (i, m) is expected to decay exponentially to zero as r = 
becomes large. The correlation length e is defined by 

(maaoi,) - (uo0o)(cqm) - r-re-r/f as r + 00 (2.12) 

where r is a constant and the limit is taken with the ratio m/l  (= q = tanSA) fixed. BP 
[ 111  calculated for 01 = 0 to find that 

l/t = 2y(S - S) /kBT for eL = 0 (2.13) 

The correlation length e is dependent on the direction 01. In this section we extend the 
analysis of BP into general directions. It is shown that the thermodynamic relation (2.13) is 
satisfied for all SA. 
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Using the standard transfer mahix argument BP represented the expectation value of the 
product crwcqm as 

(000%) = CSO(1,  P ) S m ( P ,  1)[Tp(w)/T1(w)J/ (2.14) 
P 

where Tp(w) ( p  = 1,2. . . .) is the pth eigenvalue of the transfer matrix T(w)  given by (2.1) 
in decreasing order of magnitude. For 6 ' ~  = 0, considering the 1 + co limit with m = 0 
in (2.14), we can obtain e from the ratios between the largest and next-largest eigenvalues 
of T(w). To find e for general 6'4, the coefficients &(l. p)s , (p ,  1) are also important as 
well as the ratios of the eigenvalues. Calculating &(l, p)Sm(p,  1) is a very complicated 
problem, however. As was shown in section 2.1 of 151, we can overcome this difficulty by 
introducing the shift operator. Noting that T(w) reduces to the shift operator in the w -+ 1 
limit, we rewrite (2.14) as 

(2.14') 

Using expression (2.14'). we can calculate the anisotropic correlation length from the ratios 
between the largest and next-largest eigenvalues of the transfer matrix T(w) and those of 
the shift operator T(1). 

Substituting the explicit forms of Tp(w) obtained in section 3.1 of BP into (2.14'). and 
after some calculations, we find that 

(2.15) 

where @(w/blW(w/bz)  and @( l /b~)@( l /h )  correspond to T p ( w ) / Z ( w )  and Tp(l)/Z(l) 
in (2.14'). respectively; the function #(w)  is defined by (2.4). The summation in (2.14') 
becomes integrals along unit circles on two sheets of Riemann surface because of the 
continuous distribution of the eigenvalues in the M -+ 03 h i t  The function p(b1, bz) is 
determined from the distribution of the eigenvalues and the coefficients &(l, p)&(p.  1) in 
(2.14'). Its explicit form is not important here. 

We can estimate the integral in the right-hand side of (2.15) by the method of steepest 
descent, which is the same calculation given in section 2.1. As a result, we get 

1 f E  = 2y(S - S ) / k B T  for all 6'~. (2.16) 

3. Regime III 

3.1. Anisotropic interfacial tension 

In this and the following sections, the shift operator method in [6] is applied to the calculation 
of the anisotropic interfacial tension of regime III. As mentioned in section 1, regime III 
is a first-order transition surface where a disordered fluid phase and two c(2 x 2) ordered 
solid phases can coexist. Therefore, two types of interfacial tension are possible: one is the 
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interfacial tension y(S - S) between the two solid phases; and the other is the interfacial 
tension y ( F  - S) between the fluid phase and a solid phase. Investigating y(S - S) is 
too complicated a problem to be treated here. Analysis is restricted to y(F - S). In this 
section we explain the s h e  operator method to calculate the anisotropic interfacial tension 
y (  F - S). We introduce two inhomogeneous systems; each inhomogeneous system consists 
of two regions; one of the two regions works as the ‘column-column’ shift operator. For 
each inhomogeneous system we examine a one-parameter family of commuting transfer 
matrices [3,10,1 I]. The eigenvalues of the transfer matrix satisfy a functional equation. In 
the next section, by solving the functionhequation, we obtain the anisotropic interfacial 
tension y ( F  - S). We shall use the parametrization of the five Boltzmann weights os in 
(1.2b) given by (3.14) of [IO] with w and x (0 < x < 1). 

We consider two inhomogeneous systems to define the anisotropic interfacial tension. 
Suppose a square lattice of ( 1  + q)M columns and N rows wound on a cylinder (M 
Mq E 0 (mod 2)). We also assume that w can vary from column to column. The value of w 
between the jth column and the (j+l)th column is denoted by w,. The two inhomogeneous 
systems are given by 

w, = w2 E.. . W M  = W O  WM+, = WM+* = , . . = W(I+q)M = x‘ 

where x < WO < 1 and r = 0 or 1. The inhomogeneous system with r = 0 is called (A), 
and the system with r = 1 (B). Hereafter, the new parameter WO is abbreviated to w. 

h ... :-.- -.___ :.-..., fiL , .  . .  , .  . .  ....._._. 4 
.-.. fi __.. - -+..;. I I .  , .  ....__._. 

(A) (B) 
Figure 2. Tpical configuratons.of the inhomogeneous systems (A) and (B) in Lhe x + 0 limit. 
There exists an interface acma the region w, = w for 1 < j 6 M. In rhe system (A) (Or (E)) 
the region wj = 1 (or x )  for M + 1 < j < (1 + v)M shifts the endpoint of the interface on the 
(M + 1)th column from that on the fin1 column downward (or upward) by qM lattice spaCings. 

We fix the boundary particle configurations of the inhomogeneous systems as follows: 

at = (O,O, . .~. ,O)  Ob = ( O , l ,  0,1, .  . . ,o, 1)  
where ut and crb are the particle configurations on the top row and the bottom row, 
respectively. Then, there exists an interface F-S across the region wj = w for 1 6 j < M 
(figure 2). In (A) (or (B)) the region wj = 1 (or x )  for M + 1 < j < ( 1  + q)M tilts the 
interface by shifting the endpoint on the (M + 1)th column from that on the first column 
downward (or upward) by qM lattice spacings. We represent the average tilt of the interface 
by 0~. ,  which is the angle between the horizontal direction and the normal direction of the 
line connecting the two endpoints of the interface. The parameter q is related to 0, by 

(A) v = l/tan01 0 < 0, < ~ / 2  (3.la) 

(B) q=-l/tan0i 2 ~ / 2 < 0 ~ < ~  (3.M) 
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Let .&N(eL) (0 < OL < x )  be the partition function of (A) and (B) with the boundary 
conditions. The anisotropic interfacial tension is defined by 

y ( F  - SpL) = -ksT sin 0~ lim M-' In[ZMN(Br)/N~M"-l)] (3.2) 

where the limit is taken with 0, (or q )  fixed to be constanc K is the partition function per 
face in the region w j  = w. 

To 'calculate ZMN(e.L) in (3.2). we consmct a one-parameter family of commuting 
transfer matrices for each inhomogeneous system [3, IO, 111. The inhomogeneous systems 
(A) and (B) we generalized: we set the w j  to be 

M.N+CS 

W l  = wz =. . . = W M  = wvfxl  WM+l = WM+* = . ' ' = W(I+,)M = U 

where r = 0 (or 1) for the generalized system (A) (or (B)); using the convention of r ,  we 
deal with the inhomogeneous systems (A) and (B) in parallel. If U = (ut, uz, . . . , U(I+~)M)  
and U' = {U:, U;, . . . , u ( ~ + ~ , ~ ]  are the particle configurations of two successive periodic 
rows, the m s f e r  matrix is defined by elements as 

(3.3) 

Unless otherwise mentioned, we regard U as a complex variable and x ,  w as constants 
(0 < x < w < 1). For all complex variables U and U', Tm(u) and Tm(u') commute with 
each other, being simultaneously diagonalized. We denote the eigenvalues of Tm(u) by 
Tm(u). From the same derivation of (3.5) in [lo], it follows that the eigenvalues &(U) 
must satisfy the functional equation 

Tm(v)fiH(xv) = 1 + f i H ( x 3 U ) .  (3.4) 

We also find the periodicity relation 

&(x5v)  = f i H ( V ) .  (3.5) 

Assuming some analytic properties of the eigenvalues &+(U) and, using (3.4) and (3.5). we 
can determine the explicit forms of f i ~ ( ~ ) .  After the eigenvalues f i ~ ( ~ )  are determined, we 
can get the necessary information for obtaining the anisotropic interfacial tension by setfing 
v = x'. 

3.2. Anisotropic intqfacial tension 2 

Let us now calculate the eigenvalues f i ~ ( u ) .  First, we consider the forms of GH(U)  in the 
x + 0 limit, which give some useful insights into their large-M behaviour. Then, using 
the functional equation (3.4) and the periodicity relation (3.5). we determine the asymptotic 
behaviour of Tm(v) as M becomes large. From the asymptotic behaviour of Tm(u), we 
can estimate the partition function in (3.2). The anisotropic interfacial tension is given by 
the finite-size correction terms of the largest eigenvalues as M + W. Since methods are 
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almost the same, we explain only the analysis for (A) with r = 0, and omit that for (B). 
Calculation in this section is an extension of section 2 of BP [ 111. 

To obtain the anisotropic interfacial tension, we wish to investigate the largest 
eigenvalues in the annulus x / w  < lul < 1. There, a disordered fluid phase and two 
c(2 x 2) ordered solid phases are degenerate. From this fact it is expected that a triplet of 
the largest eigenvalues are. asymptotically degenerate as M becomes large. Such eigenvalues 
are found in the x + 0 limit: In this limit there exist a triplet of eigenvalues 7&*(u) and 
Ti;x(u) which behave as 

x 3 p / w  < ( V I  < x-l/Z ( 3 . 6 ~ )  

x ( ~  - X 3 ~ W u ) ~ ( 1  - X 3 / U ) 0 ~  x4/w < Iu( < x2 (3@) 

Tnr;+(v) N ~ ~ ( - , , ) M / Z ( _ ~ ) S ~ / Z X - ~ ( ~ + ~ ) M / ~  

x3/z/w -= IuI < x-112 (3.7Q) 

i' 
Tm:.(u) - - (_Wu)M/z( - , )~M/2x- ( ICI l )M I -l x(1 -x3/wu)M(I -x3/u)'IM x4/w < IUI < x z  (3.7b) 

The factors 1 in ( 3 . 6 ~ )  and - I  in (3 .74  come from superpositions of a vacuum state 
consisting of the face q and complete c(2 x 2) ordered ones dominated by the fkes w4 
and us. The right-eigenvectors corresponding to Tw*(u) are 

1 1 1 1%) = -100) f -110) f -101) .Jz 2 2 

and the right-eigenvector corresponding to T&u) is 

1 1 
IX) = -IlO) - -101) 43 Ji 

(3.8) 

(3.9) 

where 100) (respectively IlO), 101)) is a column vector which has entries 1 for the particle 
configuration (0.0,. . . ,0} (respectively (1.0, L-0, i.. , 1, O}, IO, 1.0, 1 , .  . . ,O,  I}) and 0 
for the other particle configurations; transposing the right-eigenvectors gives the left- 
eigenvectors. We identify T i + ( u )  and Tmx(u) as the triplet of the largest eigenvalues 
in the annulus x / w  < \U( < 1 since they are indeed so in the x + 0 h i t .  

The eigenvalues TIH:*(u) are important for calculating the anisotropic interfacial tension 
y(F - S). When M becomes large, we determine the asymptotic behaviour of f i ~ ; * ( u )  as 
follows. In the beginning we find the leading terms of TM*(u). The result (3.6) in the 
x --f 0 limit suggests that, for large M, &;*(u),must be of the form 

1 X ' ~ ~ / W  < [U/ < x-'/* (3.10~) 
Tm:+(u) - I vmK(U)(l - X 3 / W U ) M ( I  -x3/u)1M (3.10b) 

where m is an integer and the function K(u)  is analytic and non-zero in the annulus 
x 4 / w  .c IuI < x z .  Consider the annulus x 3 / w  < [U/ < x2.  Then, substituting (3.10) 
into (3.4) gives 

x4/w < JUI < x2 

u ~ ( ~ u ) ~ K , ( u ) K ( ~ u ) ( I  - x ~ / w u ) ~ ( I  - X 2 / W u ) M ( ~  - X 3 / u ) @ ( 1  - X 2 / u ) n M  = 2 

x3 /w  < [ V I  < x2 (3.11) 



2294 M Fujimoto 

where we keep only the dominant terms as M + W. Taking logarithms of both sides of 
(3.11), Laurent expanding and equating coefficients, we can determine the integer m and 
the explicit form of K ( u ) .  It follows that 

Tw* - f&ljM(wu)$qM(u), x4/w < IUI < xz (3.12) 

where 

(3.13) 

and f ( p ,  q )  is defined by (2.4b). From (3.10~) and (3.12). using (3.4) with (3.5). we can 
consistently determine the leading behaviour of Tm;*(u) for all U. Furthermore, (3.12) 
reproduces (3.6b) in the x + 0 limit These facts show that (3.10~) and (3.12) give the 
correct leading behaviour of f i ~ ; + ( u )  as M + 03. 

Next, we investigate the finite-size correction terms of Tnr:*(u) as M becomes large. 
Consider the annulus x1I2 /w < IvI e x-I12, where the second term is exponentially smaller 
than the unity in the right-hand side of (3.4). Taking logarithms of both sides of (3.4), 
Laurent expanding, and equating coefficients, we find that 

InfiH:+(u) = - 

l j 2  l j 2  
$(U) = ( - lJ/x ) f(xu, x2) / f (v ,  x 2 )  

- - J ( V / X ' ~ ' )  1n[l+ T ~ : * ( x ~ u ' ) I  x3IZ/w < IUI < x-' /*  
2ni c U' 

(3.14) 
* #- du' 

where C is a circle in X ' / ~ / W  < IuI e x-lI2 and J ( u )  is defined by 

(3.15) 

For large M, using (3.12). we estimate the logarithm in the integrand in the right-hand side 
of (3.14) as 

In[l+ fiH:*(x3u')] - I & $ ~ ( x w u ' ) $ ~ ~ ( x u ' )  (3.16) 

and integrate (3.14) by the method of steepest descent It follows that 

T i i ( V )  - 1 I ~ ~ ( u ) ~ $ ~ ( x w u , ) $ ~ ~ ( x u , )  + .. . 
where U, is a saddle point of ~ ~ ( ~ w u ' ) $ ~ ( x u ' ) ~ ,  given by 

x3I2/w < I u I  < x-l12 (3.17) 

with the condition 

U, = -l/w e, = ~p..  (3.18b) 

The explicit form of ~ ( v ) ,  which is determined from J ( u )  and the derivatives of +(U), is not 
important here. Since I $ ( x ~ u , ) $ ~ ( x u , ) l  < 1, (3.17) shows that &..(U) are asymptotically 
degenerate as M + W. 
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Now, setting U = I, we calculate the anisotropic interfacial tension. When M and N 
become large (1 << M << N << $-"(xwu,)$-~"(xu,)), using the triplet of the largest 
eigenvalues Tm:i(l) and T,H:x(I), we can estimate the partition function Z M N ( 0 , )  in (3.2) 
as 

Note that T ~ ; x ( l )  is a negative eigenvalue: from (3.7) it follows that, as M + 03, Tm;x(u) 
is of the form 

TrH;x(u) = -1 +O(x-")  x 2 / w  < ]U1 < x-1' (3.20) 

with E > 0. The asymptotic behaviour of ZMN(eL) is expected to occur regardless of 
whether" is even or odd, which suggests that the contribution from the third term is very 
small in the right-hand side of (3.19). In the~q -+ 0 and CO limits (OOlX) is exactly zero. 
For general q. numerical diagonalization of Tm(1) for finite-size systems shows that 

(i) (OOlX) decays to zero more rapidly than the finite-size correction terms of T ~ i ( 1 )  
as M becomes large (numerical diagonalization also shows that the first term is negligible 
in the right-hand side of (3.19)); 

(ii) for large M, (oOl+)(+lOl) (r 0) and (C€l~-)(-~Ol) are equal in magnitude and 
opposite in sign. 

The facts (i) and (ii) are consistent with (3.9) and (3.8) in the x -+ 0 limit, respectively. 
Although we cannot rigorously prove them we are certain of the properties (i) and (ii). 
Using these properties in the right-hand side of (3.19), we obtain for sufficient large M and 
N 

z,,(eL) - zz/2hr(ooi+)(+ioi)a(i)~M(xwv3~'IM(XUs). (3.19') 

On the other hand, the partition function per face is calculated as 

IIM K = lim Tw+(l) = 1. 
M+m 

(3.21) 

Substituting (3.19') and (3.21) into (3.2). we get 

.. - 
y ( ~ - ~ ~ ~ ~ ) / ~ B ~ , ~ = c o s e ~ i n $ ( u , ) + s i n e ~ i n $ ( w v , j  o <ei < n / i  (3.22) 

Combining the result of the inhomogeneous system (B), and using the relation y(F-SlOL+ 
n) = y ( F  - Sled,  we find that (3.22) is analytically continued into -n < OL < n, with 
U, regarded as a function of OL. 
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3.3. Equilibrium crystal shape 

We are in a position to derive the E= in this regime. Here, we assume that a droplet of a 
solid phase is embedded inside a sea of the fluid phase (or vice versa). Replacing y(S - S) 
by y ( F  - S) in (2.8), and substituting (3.22). we obtain 

AX/kBT = h $ ( U , )  AY/kBT = hI$(WU,). (3.23) 

Similarly to (2.9), it is found that (3.23) can be rewritten in the symmetric biquadratic 
relation (Llu), with the two coefficients Ai'") and A Y '  replaced by 

The elliptic function $(U) is essentially the sn function which naturally pamehizes the 
symmetric biquadratic relation (1.1a). Compare (3.24) with (4.22) of [7]. It follows that 
(3.23) corresponds to the ECS of the eight-vertex model with 

u(8vl = w/x1/2 = x l / z  (3.25) 

where the variables of the eight-vertex model U('"' and x"") are defined by (4.18b) and 
(3.5) of [71, respectively. 

3.4. Anisotropic correlation length 

To find the anisotropic correlation length, we repeat the analysis in section 2.3. Suppose 
a sufficiently large lattice of M columns and N rows with periodic boundary conditions 
in both directions (M N = 0 (mod 2)). Using the expression (2.14'), we estimate the 
asymptotic behaviour of the pair correlation function between the site (0.0) and the site 
(1, m) from the ratios between the largest and next-largest eigenvalues of the transfer matrix 
T(w) and those of the shift operator T( 1); the transfer matrix T(w) is defined by (2.1). with 
the five Boltzmann weights os parametrized by (3.14) of [IO] with 0 < w < x < 1; and 
T(w) reduces to the shift operator in the w + 1 limit. The explicit forms of the eigenvalues 
of T ( w )  were determined in section 3.1 of BP [ I l l .  Substitute them into (2,14'). It follows 
that 

x [i(w/d~)i~(l/d~)I'[i(wldz)i~(~/d~)l') (3.26) 

where @(d) = -i$(x'/'d) and q = m / l  = tan8~. Calculating the integral in the right-hand 
side of (3.26) by~the method of steepest descent, we find that 

l/t = 2 y ( F  - S)/kBT for all 8,. (3.27) 

The thermodynamic relation (3.27) is an extension of (2.46) in BP. 
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4. Summary and discussion 

We calculated the anisotropic interfacial tension of regimes III and IV of the hard-square 
model defined by Baxter. In regime IV we have investigated the interfacial tension y(S-S) 
between the two c(2 x 2) ordered solid phases, and in regime III the interfacial tension 
y ( F  - S) between the disordered fluid phase and a c(2 x 2) ordered solid phase. From the 
calculated anisotropic interfacial tension we obtained the ECSs via the Wulff consrmction. 
In both regimes it WBS found that the ECS is represented by the symmetric biquadratic 
relation ( l . la ) ,  which is the same ECS that the eight-vertex model has. Thus, the ECS ( 1 . 1 ~ )  
is quite .general. As shown in the analyses of the eight-vertex model and the hard-square 
models, the ECS ( 1 . 1 ~ )  provides a characteristic expression for the interfacial tension: the 
sn function which naturally parametrizes the symmetric biquadratic relation ( 1 . 1 ~ )  appears 
in the expression of the interfacial tension. Besides the eight-vertex and the hard-square 
models, the interfacial tension of the magnetic hard-square model [I31 and the Sogc- 
Akutsu-Abe (SAA) model [14] was calculated along a special direction by a standard transfer 
matrix argument. There, elliptic functions in the expressions of the interfacial tension are 
also (essentially) the sn function. It is strongly suggested that the ECSS of the magnetic 
hard-square model and the SAA model are the symmetric biquadratic relation ( 1 . 1 ~ ) .  

For regimes I l l  and IV we showed a thennodynamic relation between the anisotropic 
interfacial tension and the anisotropic correlation length, the form being 

l / t  = 2 y / k ~ T  for all directions (4.1 ) 

where the anisotropic interfacial tension is denoted by y .  and the anisotropic correlation 
length by 5. It is known that a simple thermodynamic relation like (4.1) usually holds 
between the interfacial tension and the correlation length [3,5,13-161. ' Therefore, the 
expression for the correlation length can give useful information about the €0. We make 
an addition to the above argument; in [17], the correlation length of some solvable models 
was calculated along a special direction. The correlation length of the solvable models 
is represented by the use of (essentially) the sn function. From this fact, assuming the 
thermodynamic relation (4.1), we also expect that the ECSs of the solvable models will be 
the symmetric biquadratic relation ( 1 . 1 ~ ) .  To conclude, we expect that (1 .1~)  is a universal 
shape which appears as the ECSS of a wide class of models. Further study of ( 1 . 1 ~ )  is 
desirable. 

Finally, we considered the critical limit of the ECS ( I . la)  for the eight-vertex model and 
regimes ID and IVof the hard-square model. The behaviour of the coefficients A3. A4 of 
the eight-vertex model (respectively regimes III, IV) in the critical limit is given by (4.22) 
of [7] (respectively (3.24), (2.10)) with I + 00 (respectively x + 1, - 1 ) ;  It is convenient 
to use the conjugate modulus transformation (A&) of [7] .  (See also section 3 of [IO] and 
ch 15 of [3].) Noting that A --f 0 in the critical limit, we find that 

(X + Y)2/cos2(xu/2h) + (X - Y)2/sin2(xu/2h) 0: 64kiTz (4.2) 

where U is the spectral parameter and h is the crossing parameter; in [7] U and h parametrizes 
the Boltzmann weights of the eight-vertex model by (2.1), and later, for calculational 
convenience, U is rewritten as ug; for the hard-square model U is related to w by (3.10) of 
[lo], and A = ~ / 5 .  

When the interactions are isotropic, two-dimensional lattice models are conformally 
invariant at the critical point [ 181. If we consider such a conformally invariant model on a 
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lattice of M columns and N rows (1 (< M <( N )  wound on a torus, it can be shown that 
the partition function Z must be of the form 

In Z - M N f  + ( i r c / 6 ) ( N / M )  (4.3) 

where f is the free energy per site (or face), and c is the conformal anomaly. For most 
anisotropic systems, where the conformal invariance is restored by a suitable anisotropic 
rescaling of length, (4.3) is modified as [19] 

InZ - M N f  + ( r r ~ / 6 ) ( N / M ) r - ~  (4.4u) 

(4.4b) r2 = y2cos2e + y-2sin2e 

where y2 represents the required rescaling, and 0 is the angle between the vertical axis 
and the direction along which the system is rescaled. For the eight-vertex and hard-square 
models, (4.2) shows that 

y2 = sin(nu/2~)/cos(iru/2~) 0 = z/4. (4.5u) 

Substituting (4 .5~)  into (4.4b), we get 

rz = sin-'(rru/h). (4.5b) 

Kim and Pearce (KP) [20] discussed rz from several solvable models, using the comer 
transfer matrices. They showed that (4.56) is a general expression satisfied by the eight- 
vertex, hard-square, magnetic hard-square, and the q-state Potts models. For the eight-vertex 
and hard-square models, the expression (4.56) is closely related to the symmetric biquadratic 
relation (1.1~)  through parametrization by the Jacobian elliptic functions. This fact renders 
the ECSs of the q-state Potts models, which are not solvable except at the critical point, 
extremely interesting. I hope that this problem will be clarified in a future publication. 
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